

General Relativity tests with AOV

Oleg Titov (Geoscience Australia)

Three sessions in 2017-2018

AUA and **AOV**

01-May-17 AUA020 Asia, Russia, South Africa

07-Oct-17 AUA029 Asia, Oceania, Europe, South Africa

01-May-18 AOV022 Asia, Oceania, Europe, South Africa

General relativity test

1 May 2017 (custom, scheduled in WUT, correlated in SHAO) (Hartrao, Hobart26, Svetloe, Zelenchuk, Badary, Sejong, Seshan25)

```
577 observations of 0229+131 (2°.26 to 2°.52) 452 observations of 0235+164 (1°.46 to 1°.15) 1029 observations in total
```

Telescopes were not affected Solar corona effect is negligible, and electron content is estimated easily

Solar thermal noise grows rapidly as elongation decreases Large telescopes are required (narrow beam)

General relativity test

Results for gamma ·10⁻⁴

Quasar	Sources	OCCAM estimate of γ • 10-4
AUA020 1.05.17	0229+131 & 0235+164	0.9 +/- 0.9
AUA029 7.10.17	3C279	2 +/- 12
AOV020 1.05.18	0229+131 & 0235+164	-2.3 +/- 2.0

$$\Delta \gamma = 2.1$$
 (2003) $^{-5}$ "Cassini" Bertotti et al (2003)

Source structure effect caused some problems for AOV020

Publications

A&A 618, A8 (2018) https://doi.org/10.1051/0004-6361/201833459 © ESO 2018

Testing general relativity with geodetic VLBI

What a single, specially designed experiment can teach us

O. Titov¹, A. Girdiuk², S. B. Lambert³, J. Lovell⁴, J. McCallum⁴, S. Shabala⁴, L. McCallum⁴, D. Mayer², M. Schartner², A. de Witt⁵, F. Shu⁶, A. Melnikov⁷, D. Ivanov⁷, A. Mikhailov⁷, S. Yi⁸, B. Soja⁹, B. Xia⁶, and T. Jiang⁶

 $\Delta \gamma = 0.9 (2.9) 20^{-4}$ The best estimate ever done with geodetic VLBI

 $\Delta y = 2.1(\pm 2.3) \cdot 10^{-5}$ "Cassini" Bertotti et al (2003)

Electron content of the corona

(by Benedikt Soja, from AUA020, 1-May-2017)

$$N_e(r) = N_0 \cdot r^{\beta}$$

$$N_0 = (0.61 \pm 0.05) \cdot 10^{12} \text{ m}^{-3}$$

$$\beta = (2.18 \pm 0.01)$$

Session AOV022, 1-May-2018

Residuals for 0229+131, different baselines

Session AOV022, 1-May-2018

Residuals for 0229+131, different baselines

Conclusion

- 1. Geodetic VLBI has a good potential of further improvement of the general relativity tests.
- 2. Observations near 1° from the Sun are possible.
- 3. Custom schedule to be prepared; a strong source in a good time by many large radio telescopes at high recording rate.
- 4. Source structure needs to be reduced for the AOV020

Any Questions?

Thank you for your attention

Phone: +61 2 6249 9111

Web: www.ga.gov.au

Email: oleg.titov@ga.gov.au

Address: Cnr Jerrabomberra Avenue and Hindmarsh Drive, Symonston ACT 2609

Postal Address: GPO Box 378, Canberra ACT 2601